“eyberry猜想的最終需求是證明是任何分形維數和分形測度的譜不變量,如果能給出邊界點,那么的分形維數和分形測度的譜應該就能確定下來了。”
“這個想法的確是我一開始的靈感,但當初沒有足夠基礎知識讓我對其驗算,現在看上去這個靈感還有一點缺陷,不過不要緊,我可以先嘗試一下。”
盯著稿紙上記錄的信息,徐川陷入了沉思中。
在去年感冒的時候,他曾經獲得過有關證明eyberry猜想的靈感,但當時苦于沒有足夠的基礎數學,他無法對其進行驗算。
而今天,在聽取了舒爾茨教授在報告會上講解的s進域幾何理論以及和陶哲軒教授的討論后,這個契機似乎到了。
意識到這點后,徐川起身拿起床頭的座機給一樓大廳的服務員打了個電話,讓他們送一疊稿紙或者打印紙上來。
這在普林斯頓的任何一間酒店中,都是免費無償且酒店必須要的服務。
因為這里是數學的圣地,誰也不知道酒店中是否入住了某位數學家,是否在某天晚上忽然有了靈感。
所以為了學術,普林斯頓將一切服務做到了最好。
很快,酒店的服務員就將厚厚的一碟稿紙送了過來,順帶的還有一句祝福。
“祝您好運,先生。”
不過徐川并沒有理會,他此刻還沉浸在腦海中的構思中,無神的從小哥手中接過稿紙后,徑直砰的一聲關上了房門。
門口的小哥并沒有介意,在這里工作,他見識到了太多的數學家,也見識到了很多的怪人。
像這間房間中的顧客,甚至都說不上怪,沒有理會他,只能說明他此刻正沉浸在對某個問題的思考中。
雖說看著年輕點不像是一名數學家,但年輕的數學家也不是沒有。
比如他們酒店在十來年前就入住過陶哲軒教授,那位大牛還在他們的酒店中解決過一個數學猜想。
后面那間房間被當做具有特殊意義的房間保留了下來,很少對外開放了。
從服務員的手中接過稿紙后,徐川再度回到了木桌前。
帶著點米白的白色稿紙平鋪在桌上,黑色的圓珠筆開始在上面勾勒數學符號。
“從ey定理32出發,構造一個有界且連通的開集,設為滿足以上條件2中有界連通區域,其邊界具有內koski維數δn1,n,則有,且有
n,δπ2δ2nto1oδπ2
“”
“設a為一個的連通區域,各正方形的邊長為iai1ai,,函數ax是嚴格單調增的,并且ixixax1ax0”
“進一步要求a的面積有界,即a2i02i
“計算邊界的內koski維數6以及6維上koski容量”
“”
從上次的靈感出發,徐川將eyberry猜想的分形維數和分形測度的譜不變量定義到了一個高緯邊界上,然后利用狄利克雷函數域來轉換拉普拉斯算子和拉普拉斯雙曲型方程,再對其進行擴域