“……為解決海上經度測定問題,早在百年前,西班牙國王菲利浦二世為解決經度問題的學者,提出了一筆賞金。差不多與此同時,荷蘭國會為解決經度問題提供了一筆高達3萬弗洛林的獎金,據稱,葡萄牙和威尼斯也提供過數量不等的經度獎,此風于歐洲盛行一時……然而,隨著大明海上貿易越來越頻繁,確定海上船舶位置的經度變得更為迫切了,為促進大明航海事業和拓殖事業的發展,建議由皇室效仿歐洲各國采用懸賞來尋求解決辦法……以用于鼓勵學者從事這一研究。”
看著這一份來自中都天文臺的奏折,朱明忠的眉頭微微一挑。
經度!
終于有人提出這個問題了!
其實,早在初定江北的時候,朱明忠就曾經認真的考慮過經度的問題,在另一個時空中,時間法和月距法是一百多年后,解決經度問題的兩個辦法。因為時間法需要構造精密的航海鐘,所以朱明忠選擇了自己更為了解的月距法。相比于一個價格昂貴的航海鐘,一架高質量的六分儀,外加一本《月距表》,價格是極為低廉的,從實用的角度講,“月距法”無疑有著巨大的優勢。
月距法的另一大支柱——月球的運動軌跡,在歷史上是由德國人邁耶完成的。邁耶在1755年制作了一份《月球表》,準確地描述了月球在任意時刻的位置,他參考了瑞士數學家歐拉對月球軌道所做的計算。歐拉是一個天才的數學家,他用一組優美的方程式描述了地球、太陽和月亮之間的相對運動,解決了那個令牛頓感到頭疼的數學問題。
而早在幾年前,朱明忠就憑借著回憶寫出了那組復雜而優美的方程式,從而完成了對月球軌道所做的計算。
“可以先讓天文臺制作一份《月球表》。”
朱明忠自言自語道。
位于清河書院的天文臺,三年前,在天文臺臺長薛鳳祚等人領導之下重新繪制的大明地圖,那也是大明第一份準確的地圖。現在的天文臺里云集著大明最優秀的天文學家、數學家,他們完全可以完成這個任務。
“先編寫《月球表》,然后再以清河書院數學系的學生去計算出了整年的月距數據。這樣的話,應該可以編寫出《航海年鑒和天文星歷》……”
回憶著另一個時空,馬斯卡林解決“月距法”計算難的問題所采用的辦法,朱明忠的唇角一揚,站在巨人的肩膀上,確實可以解決很多問題。
想到這句名言,朱明忠自然而然的想到了已經在清河書院任職的牛頓,現在他已經歸化為大明人,成了清河書院的“牛教授”。
“牛教授……”
念叨著這位牛教授,朱明忠的唇角微微一揚,自然又想到了天文臺,當然還有后世鼎鼎大名的格林威治時間以及零度線。
“將來,地球上的零度線,肯定是“清河零度線”了……”