“我的持槍高度只是比淺井醫生的頭部高出了一些。”
“開槍的時候,子彈從高向低射擊,就很自然地形成了類似死者頭上的,一個較鈍的射入角。”
“這樣的話...”
“兇手的射擊姿態,也談不上有多'奇怪'吧?”
她有些在意地說出了心里的疑惑。
而林新一卻是輕輕搖了搖頭:
“不,你們弄錯了。“
“你們做出這樣的判斷,是建立在射入角較鈍的情況下。”
“而你們確定射入角較鈍,又是簡單地把射入口和射出口作兩點連線,估算出來的,子彈創道和人體體表的夾角。”
“這...”毛利蘭微微一愣:“林先生,你的意思是...”
“僅僅通過射入口和射出口的位置,確認出來的射入角,其實是錯的嗎?”
“不,大多數情況下都是對的。”
“畢竟,兩點確認一條直線,這道理的確沒錯。”
“但我們得具體問題具體分析。”
林新一微微一頓,細細解釋道:
“而現在的問題就是:”
“子彈進入人體后形成的創道,有時候并不是一條直線。”
“首先,隨著彈頭飛行距離增加,飛行姿態也會變得不太穩定。”
“其次,彈頭擊中人體時遇到阻力,有時也會改變運行方向。”
“尤其是這個案子里...死者被擊中的是額骨,這幾乎是人體最堅硬的骨骼。”
“所以,子彈在穿過人體形成的創道并不一定呈直線,曲線、甚至是折線,都有可能出現。”
“這會對射擊角度的判斷產生很大影響。”
“尤其是僅僅依據出入口的直線連接作判斷,容易出現極大的偏差。”
他一番仔細講解,讓毛利蘭和淺井成實都反應了過來:
“原來如此...”
“既然創道可能不是一條直線,用兩點確認直線、再估算射入角度的辦法,在這里就不能適用了。”
“那么,在這種情況下...射入角度,到底該怎么確定呢?”
兩人都眨著那水汪汪的大眼睛,眼里充滿好奇。
而林新一則是繼續講解:
“很簡單,我之前說過...”
“如果彈頭呈角度射進人體,射入口就會形成類橢圓形的皮膚缺損。”
“射入角越銳,形成的類橢圓形就越‘扁’。”
“我就是看到射入口的皮膚缺損形狀太‘橢’了,才會覺得射入角度有問題。”
“而要計算角度,也非常容易。”
“測出那個橢圓形傷口的長軸長度X,短軸長度Y。”
“則Sinα=Y/X,α即為射入角。”
這是利用射入口直徑差異與命中角關系進行推斷的正弦推算法,學過初中數學的都能理解。
毛利蘭和淺井成實很快就理解了這個方法,并且按照林新一的吩咐,用直尺小心地測量射入口的長軸和短軸。
通過計算,發現和原本估算的7、80度不同...